
Stuff you may find interesting

W e d n e s d a y , A u g u s t 1 , 2 0 1 8

Fast boot with Raspberry Pi

I am hoping to have a raspberry pi power a wildlife camera. This camera will have to rely on battery and solar power. As a result, it would be
beneficial if the camera was off when no wildlife is present. To aid in this regard, I hope to use a motion sensor that can trigger the raspberry pi
to turn on and take a picture. For this to work, the time from motion detection to picture snap is heavily influenced by the boot time of the
raspberry pi. Here is a video of what I've been able to accomplish:

I am starting with the stock Raspbian Stretch Lite distribution on a Pi 3B. Boot times out of the box are on the order of 1 minute. Boot time is
influenced by the following:

1. Hardware

2. Bootloader

3. Kernel

4. Userspace

The Raspberry Pi hardware and bootloader are essentially out of my control. There was an effort to open source the boot loader, however the
proprietary binary blob is the only reasonable option at this point. The Hardware and bootloader take approximately a minimum of 1.5-2
seconds to run. This is explained in an excellent post on the Raspberry Pi Forums. The author tested boot times with various minimal boot
loaders. The fastest any code could be run on the ARM processor was around 1.5 seconds.

I was able to get the kernel and userspace boot times down to about 0.6 second and 0.8 seconds respectively. As a result my total boot time is
on the order of 3.5 to 4 seconds (from power on to picture taken).

To be able to control the Raspberry Pi without SSH, I used serial (UART) communications. See my previous post to learn how.

I reduced the kernel and userspace boot times by doing the following (in order highest yield to lowest yield):

Disable the rainbow splash screen

disable_splash=1

Disable bluetooth

dtoverlay=pi3-disable-bt

#Disable Wifi

dtoverlay=pi3-disable-wifi

Overclock the SD Card from 50 to 100MHz

This can only be done with at least a UHS Class 1 card

dtoverlay=sdtweak,overclock_50=100

Set the bootloader delay to 0 seconds. The default is 1s if not specified.

boot_delay=0

Overclock the raspberry pi. This voids its warranty. Make sure you have a good power supply.

force_turbo=1

dwc_otg.lpm_enable=0 console=serial0,115200 console=tty1 root=PARTUUID=32e07f87-02 rootfstype=ext4

elevator=deadline fsck.repair=yes quiet rootwait

1. Editing the /boot/config.txt with the following changes:

2. Make the kernel output less verbose by adding the "quiet" flag to the kernel
command line in file /boot/cmdline.txt

3. Use systemd-analyze blame, systemd-analyze critical-chain to disable services I
didn't need

Fast boot with Raspberry Pi
I am hoping to have a
raspberry pi power a
wildlife camera. This
camera will have to rely on
battery and solar power. As

a result, it would ...

Raspberry Pi USB Power
Issues - Ultimate Solution
Update: This modification
will probably void your
warranty and comes with no
guarantees. Use at your

own risk. I have been struggling with ...

Wireless, Battery Powered,
Time-lapse Video with a
Raspberry Pi
I was looking for cool
projects for my Raspberry Pi
and came across a really

cool project by Jeremy Blythe: Battery
powered, Wireless, Motio...

Small and Cheap USB Wi-fi
Adapter for the Raspberry
Pi
I wanted to write this for
the benefit of Raspberry Pi
owners who are still looking

for an appropriate and economical Wi-Fi
adapter. The che...

First Post
This is a content-less first post just so that
I can figure out what my blog will look like.

Raspberry Pi Camera Module
HD Time-lapse
So a bunch of camera
modules were made
available last week and so I
finally went ahead and

ordered one for my Raspberry Pi. It arrived
in le...

Serial Communications with
Raspberry Pi
Running a headless
raspberry pi can be
challenging. Until now I've
been using SSH to control

my raspberry pi. This works well if your
ra...

PiJuice - Mobile Power for
the Raspberry Pi (First
Impressions)
Ever since the Raspberry Pi
came out I've had an idea to
make a time lapse camera

that would take pictures over weeks,
months, or even a...

Raspberry Pi Camera Module Information
I am very excited about the Raspberry Pi

Camera module. So excited that I've
compiled the latest information I could
find on the camera ...

Resizing partitions within an image file
I wanted to backup a 32GB SD Card to a
16GB SD Card. The 32 GB SD Card only
contained 10GB of data so it should be
possible. I started by ...

Popular Posts

Himesh's Blog: Fast boot with Raspberry Pi https://himeshp.blogspot.com/2018/08/fast-boot-with-raspberry-pi.html

1 of 4 9/4/2021, 11:02 PM

sudo systemctl disable dhcpcd.service

sudo systemctl disable networking.service

sudo systemctl disable ssh.service

sudo systemctl disable ntp.service

sudo systemctl disable dphys-swapfile.service

sudo systemctl disable keyboard-setup.service

sudo systemctl disable apt-daily.service

sudo systemctl disable wifi-country.service

sudo systemctl disable hciuart.service

sudo systemctl disable raspi-config.service

sudo systemctl disable avahi-daemon.service

sudo systemctl disable triggerhappy.service

See the references below to learn about a primer on systemd and the new linux init system to learn about how to interpret and write the above
services.

[Unit]

Description=Starts 1 Year Lapse Service

[Service]

ExecStart=/home/pi/foo.sh

StandardOutput=syslog

StandardError=syslog

SyslogIdentifier=piservice

User=pi

Group=pi

WorkingDirectory=/root/1ylapse/

[Install]

WantedBy=basic.target

To do this you need to compile your kernel with "CONFIG_PRINTK_TIME" and "CONFIG_KALLSYMS". This should be enabled on the default raspberry
pi kernel. This allows you to add "initcall_debug" to the kernel command line. The kernel will now output start and end time information for
every init call. You can use "bootgraph.pl" which is included with the linux kernel to analyze the output of dmesg.

On the raspberry pi:

$ dmesg > boot.log

On the cross-compile host:

$ linux/scripts/bootgraph.pl boot.log > boot.sv

This will output an graph of what is taking the most time when initializing the kernel. I noticed that a routine used by the USB driver was taking
around 0.3s. I don't need USB for my project so I disabled USB support when re-compiling the kernel (see below). This saved around 0.3s.

Remove stuff that is wasting time during initialization. I used the guide from the Raspberry Pi Foundation to learn how to re-compile the kernel.

When compiling the Linux kernel, select "LZO" compression instead of "GZip". This saved around 0.3s.

Edit the /etc/fstab file and comment out the line that re-mounts the /boot partition. This saved around 0.2s.

The final systemd-analyze shows:

Startup finished in 669ms (kernel) + 1.225s (userspace) = 1.894s

It should be noted that my camera service starts before systemd is finished initializing. You can find out when your service starts by using
systemd-analyze crritical-chain. You can see below that my service starts at 836ms after the kernel is finished initializing, rather than the total
of 1.225s.

$ systemd-analyze critical-chain 1ylapse.service

1ylapse.service @836ms

└─basic.target @832ms

 └─sockets.target @832ms

 └─dbus.socket @831ms

 └─sysinit.target @826ms

 └─systemd-update-utmp.service @784ms +41ms

 └─systemd-tmpfiles-setup.service @748ms +33ms

 └─systemd-journal-flush.service @658ms +87ms

 └─systemd-remount-fs.service @585ms +64ms

 └─systemd-fsck-root.service @444ms +137ms

 └─systemd-journald.socket @433ms

 └─-.slice @376ms

4. Add a service that runs the code you would like to run as fast as possible. For
example if you wanted to add a service called "1ylapse", create the following file:
/etc/systemd/system/1ylapse.service

5. Analyze the kernel for unnecessary work being done at boot.

6. Re-compile the Linux kernel

7. Use LZO compression for kernel

8. Don't re-mount the /boot partition

Himesh's Blog: Fast boot with Raspberry Pi https://himeshp.blogspot.com/2018/08/fast-boot-with-raspberry-pi.html

2 of 4 9/4/2021, 11:02 PM

Newer Post Older PostHome

Subscribe to: Post Comments (Atom)

Posted by Himesh Prasad at 2:10 PM

sudo apt-get purge --remove plymouth

I haven't seen anyone boot a raspberry pi faster than this using full Raspbian. Bare metal is obviously faster however. However having full
Raspbian available at this boot up speed is a good compromise.

Things that failed to improve boot time included making the root partition read only.

Hopefully this helps others in my predicament.

References:

1. Presentation by Jan Altenberg on booting linux in less than 1 second. Powerpoint here. Youtube of presentation here.

2. Excellent powerpoint on boot time optimization using a beagle bone as a prototype here.

3. Excellent powerpoint on speeding up raspberry pi boot time here.

4. Excellent primer on systemd-anzlyze.

5. Good stackoverflow question on using sytemd-analyze.

9. Remove plymouth to disable systemd init messages

Notify me

Comment as:

Publish

8 comments:

Ash McKenzie August 12, 2018 at 4:28 PM

This is incredible, thankyou!

Reply

Artur Rodak August 13, 2018 at 11:37 PM

Great tutorial. Thank you.

Reply

Unknown January 16, 2019 at 10:03 AM

Wow!

Reply

Murat Demir March 19, 2019 at 5:13 AM

Amazing. Do you think an Rpi zero can reach the similar boot time?

Reply

NonTechGuy April 13, 2019 at 10:53 PM

Awesome tutorial, maybe you should male a longer and more detailed video on this, kudos!!

Reply

Unknown May 20, 2019 at 7:53 AM

Very interesting. What camera software are you using?

Reply

ukdutypaid September 5, 2019 at 6:56 AM

The most recent comments here have been spam so I am unfollowing what could have been interesting followup.

Reply

JimiHx April 8, 2020 at 1:08 PM

"sudo apt-get purge --remove plymouth" will leave your raspbian unbootable because there is a depency to mountall which is removed when executing
the above command.

Reply

Himesh's Blog: Fast boot with Raspberry Pi https://himeshp.blogspot.com/2018/08/fast-boot-with-raspberry-pi.html

3 of 4 9/4/2021, 11:02 PM

Simple theme. Powered by Blogger.

Himesh's Blog: Fast boot with Raspberry Pi https://himeshp.blogspot.com/2018/08/fast-boot-with-raspberry-pi.html

4 of 4 9/4/2021, 11:02 PM

