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Fast boot with Raspberry Pi

I am hoping to have a raspberry pi power a wildlife camera. This camera will have to rely on battery and solar power. As a result, it would be
beneficial if the camera was off when no wildlife is present. To aid in this regard, I hope to use a motion sensor that can trigger the raspberry pi
to turn on and take a picture. For this to work, the time from motion detection to picture snap is heavily influenced by the boot time of the
raspberry pi. Here is a video of what I've been able to accomplish:

I am starting with the stock Raspbian Stretch Lite distribution on a Pi 3B. Boot times out of the box are on the order of 1 minute. Boot time is
influenced by the following:

1. Hardware

2. Bootloader

3. Kernel

4. Userspace

The Raspberry Pi hardware and bootloader are essentially out of my control. There was an effort to open source the boot loader, however the
proprietary binary blob is the only reasonable option at this point. The Hardware and bootloader take approximately a minimum of 1.5-2
seconds to run. This is explained in an excellent post on the Raspberry Pi Forums. The author tested boot times with various minimal boot
loaders. The fastest any code could be run on the ARM processor was around 1.5 seconds.

I was able to get the kernel and userspace boot times down to about 0.6 second and 0.8 seconds respectively. As a result my total boot time is
on the order of 3.5 to 4 seconds (from power on to picture taken).

To be able to control the Raspberry Pi without SSH, I used serial (UART) communications. See my previous post to learn how.

I reduced the kernel and userspace boot times by doing the following (in order highest yield to lowest yield):

# Disable the rainbow splash screen

disable_splash=1

# Disable bluetooth

dtoverlay=pi3-disable-bt

#Disable Wifi

dtoverlay=pi3-disable-wifi

# Overclock the SD Card from 50 to 100MHz

# This can only be done with at least a UHS Class 1 card

dtoverlay=sdtweak,overclock_50=100

# Set the bootloader delay to 0 seconds. The default is 1s if not specified.

boot_delay=0

# Overclock the raspberry pi. This voids its warranty. Make sure you have a good power supply.

force_turbo=1

dwc_otg.lpm_enable=0 console=serial0,115200 console=tty1 root=PARTUUID=32e07f87-02 rootfstype=ext4

elevator=deadline fsck.repair=yes quiet rootwait

1. Editing the /boot/config.txt with the following changes:

2. Make the kernel output less verbose by adding the "quiet" flag to the kernel
command line in file /boot/cmdline.txt

3. Use systemd-analyze blame, systemd-analyze critical-chain to disable services I
didn't need
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sudo systemctl disable dhcpcd.service

sudo systemctl disable networking.service

sudo systemctl disable ssh.service

sudo systemctl disable ntp.service

sudo systemctl disable dphys-swapfile.service

sudo systemctl disable keyboard-setup.service

sudo systemctl disable apt-daily.service

sudo systemctl disable wifi-country.service

sudo systemctl disable hciuart.service

sudo systemctl disable raspi-config.service

sudo systemctl disable avahi-daemon.service

sudo systemctl disable triggerhappy.service

See the references below to learn about a primer on systemd and the new linux init system to learn about how to interpret and write the above
services.

[Unit]

Description=Starts 1 Year Lapse Service

[Service]

ExecStart=/home/pi/foo.sh

StandardOutput=syslog

StandardError=syslog

SyslogIdentifier=piservice

User=pi

Group=pi

WorkingDirectory=/root/1ylapse/

[Install]

WantedBy=basic.target

To do this you need to compile your kernel with "CONFIG_PRINTK_TIME" and "CONFIG_KALLSYMS". This should be enabled on the default raspberry
pi kernel. This allows you to add "initcall_debug" to the kernel command line. The kernel will now output start and end time information for
every init call. You can use "bootgraph.pl" which is included with the linux kernel to analyze the output of dmesg.

On the raspberry pi:

$ dmesg > boot.log

On the cross-compile host:

$ linux/scripts/bootgraph.pl boot.log > boot.sv

This will output an graph of what is taking the most time when initializing the kernel. I noticed that a routine used by the USB driver was taking
around 0.3s. I don't need USB for my project so I disabled USB support when re-compiling the  kernel (see below). This saved around 0.3s.

Remove stuff that is wasting time during initialization. I used the guide from the Raspberry Pi Foundation to learn how to re-compile the kernel.

When compiling the Linux kernel, select "LZO" compression instead of "GZip". This saved around 0.3s.

Edit the /etc/fstab file and comment out the line that re-mounts the /boot partition. This saved around 0.2s.

The final systemd-analyze shows:

Startup finished in 669ms (kernel) + 1.225s (userspace) = 1.894s

It should be noted that my camera service starts before systemd is finished initializing. You can find out when your service starts by using
systemd-analyze crritical-chain. You can see below that my service starts at 836ms after the kernel is finished initializing, rather than the total
of 1.225s.

$ systemd-analyze critical-chain 1ylapse.service

1ylapse.service @836ms

└─basic.target @832ms

  └─sockets.target @832ms

    └─dbus.socket @831ms

      └─sysinit.target @826ms

        └─systemd-update-utmp.service @784ms +41ms

          └─systemd-tmpfiles-setup.service @748ms +33ms

            └─systemd-journal-flush.service @658ms +87ms

              └─systemd-remount-fs.service @585ms +64ms

                └─systemd-fsck-root.service @444ms +137ms

                  └─systemd-journald.socket @433ms

                    └─-.slice @376ms

4. Add a service that runs the code you would like to run as fast as possible. For
example if you wanted to add a service called "1ylapse", create the following file:
/etc/systemd/system/1ylapse.service

5. Analyze the kernel for unnecessary work being done at boot.

6. Re-compile the Linux kernel

7. Use LZO compression for kernel

8. Don't re-mount the /boot partition
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sudo apt-get purge --remove plymouth

I haven't seen anyone boot a raspberry pi faster than this using full Raspbian. Bare metal is obviously faster however. However having full
Raspbian available at this boot up speed is a good compromise.

Things that failed to improve boot time included making the root partition read only.

Hopefully this helps others in my predicament.

References:

1. Presentation by Jan Altenberg on booting linux in less than 1 second. Powerpoint here. Youtube of presentation here.

2. Excellent powerpoint on boot time optimization using a beagle bone as a prototype here.

3. Excellent powerpoint on speeding up raspberry pi boot time here.

4. Excellent primer on systemd-anzlyze.

5. Good stackoverflow question on using sytemd-analyze. 

9. Remove plymouth to disable systemd init messages
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Ash McKenzie August 12, 2018 at 4:28 PM

This is incredible, thankyou!

Reply

Artur Rodak August 13, 2018 at 11:37 PM

Great tutorial. Thank you.

Reply

Unknown January 16, 2019 at 10:03 AM

Wow!

Reply

Murat Demir March 19, 2019 at 5:13 AM

Amazing. Do you think an Rpi zero can reach the similar boot time?

Reply

NonTechGuy April 13, 2019 at 10:53 PM

Awesome tutorial, maybe you should male a longer and more detailed video on this, kudos!!

Reply

Unknown May 20, 2019 at 7:53 AM

Very interesting. What camera software are you using?

Reply

ukdutypaid September 5, 2019 at 6:56 AM

The most recent comments here have been spam so I am unfollowing what could have been interesting followup.

Reply

JimiHx April 8, 2020 at 1:08 PM

"sudo apt-get purge --remove plymouth" will leave your raspbian unbootable because there is a depency to mountall which is removed when executing
the above command.

Reply
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